Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex

نویسندگان

  • Laura J. Terry
  • Susan R. Wente
چکیده

Trafficking of nucleic acids and large proteins through nuclear pore complexes (NPCs) requires interactions with NPC proteins that harbor FG (phenylalanine-glycine) repeat domains. Specialized transport receptors that recognize cargo and bind FG domains facilitate these interactions. Whether different transport receptors utilize preferential FG domains in intact NPCs is not fully resolved. In this study, we use a large-scale deletion strategy in Saccharomyces cerevisiae to generate a new set of more minimal pore (mmp) mutants that lack specific FG domains. A comparison of messenger RNA (mRNA) export versus protein import reveals unique subsets of mmp mutants with functional defects in specific transport receptors. Thus, multiple functionally independent NPC translocation routes exist for different transport receptors. Our global analysis of the FG domain requirements in mRNA export also finds a requirement for two NPC substructures-one on the nuclear NPC face and one in the NPC central core. These results pinpoint distinct steps in the mRNA export mechanism that regulate NPC translocation efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding of the Mex67p/Mtr2p Heterodimer to Fxfg, Glfg, and Fg Repeat Nucleoporins Is Essential for Nuclear mRNA Export

It is not known how Mex67p and Mtr2p, which form a heterodimer essential for mRNA export, transport mRNPs through the nuclear pore. Here, we show that the Mex67p/Mtr2p complex binds to all of the repeat types (GLFG, FXFG, and FG) found in nucleoporins. For this interaction, complex formation between Mex67p and Mtr2p has to occur. MEX67 and MTR2 also genetically interact with different types of ...

متن کامل

mRNA Export from Mammalian Cell Nuclei Is Dependent on GANP

Bulk nuclear export of messenger ribonucleoproteins (mRNPs) through nuclear pore complexes (NPCs) is mediated by NXF1. It binds mRNPs through adaptor proteins such as ALY and SR splicing factors and mediates translocation through the central NPC transport channel via transient interactions with FG nucleoporins. Here, we show that mammalian cells require GANP (germinal center-associated nuclear ...

متن کامل

Mutations in tap uncouple RNA export activity from translocation through the nuclear pore complex.

Interactions between transport receptors and phenylalanine-glycine (FG) repeats on nucleoporins drive the translocation of receptor-cargo complexes through nuclear pores. Tap, a transport receptor that mediates nuclear export of cellular mRNAs, contains a UBA-like and NTF2-like folds that can associate directly with FG repeats. In addition, two nuclear export sequences (NESs) within the NTF2-li...

متن کامل

Arx1 functions as an unorthodox nuclear export receptor for the 60S preribosomal subunit.

Shuttling transport receptors carry cargo through nuclear pore complexes (NPCs) via transient interactions with Phe-Gly (FG)-rich nucleoporins. Here, we identify Arx1, a factor associated with a late 60S preribosomal particle in the nucleus, as an unconventional export receptor. Arx1 binds directly to FG nucleoporins and exhibits facilitated translocation through NPCs. Moreover, Arx1 functional...

متن کامل

Non-FG mediated transport of the large pre-ribosomal subunit through the nuclear pore complex by the mRNA export factor Gle2

Multiple export receptors passage bound pre-ribosomes through nuclear pore complexes (NPCs) by transiently interacting with the Phe-Gly (FG) meshwork of their transport channels. Here, we reveal how the non-FG interacting yeast mRNA export factor Gly-Leu-FG lethal 2 (Gle2) functions in the export of the large pre-ribosomal subunit (pre-60S). Structure-guided studies uncovered conserved platform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 178  شماره 

صفحات  -

تاریخ انتشار 2007